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Theory of transport coefficients of simple fluids 
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$ Department of Mathematics and Computer Science, Royal Military College of Canada, 
Kingston, Ontario K7K 5L0,  Canada 

Received 16 October 1989, in final form 26 February 1990 

Abstract. We report exhaustive calculations of the density and temperature dependences of 
the time evolution of the velocity, transverse stress and energy current density correlation 
functions and the corresponding transport coefficients for Lennard-Jones fluids over wide 
ranges of densities and temperatures. The calculated results are compared with the recent 
molecular dynamics data. Overall, good agreement has been achieved. 

1. Introduction 

With the aim of studying the atomic transport properties of monatomic liquids and 
dense gases in terms of a given interatomic potential, we have derived the molecular 
expressions for the first three non-vanishing sum rules of the velocity autocorrelation 
(VAC) (Tankeshwar et a1 1987), transverse stress autocorrelation (TSAC) (Tankeshwar et 
a1 1988) and energy current density autocorrelation (ECDAC) (Tankeshwar et a1 1989) 
functions. The fourth non-vanishing sum rule of the VAC function has also been derived. 
The expressions for these coefficients involve the interatomic potential and the static 
correlation functions up to five particles. Owing to non-availability of sufficient infor- 
mation about the static triplet and higher particle correlation functions, we have used 
the superposition approximation (SA) and a low-order decoupling approximation (Tan- 
keshwar et a1 1987) for these, respectively. Our final expressions involve only the static 
pair correlation function g ( r )  and have been put into the form which is readily calculable 
for a given potential and g ( r ) .  These have been calculated for Lennard-Jones (LJ) fluids 
using g(r )  from the optimised cluster theory of Sung and Chandler (1974) for some 
ranges of densities and temperatures. Using these results and Green Kubo formulae for 
the transport coefficients and memory function formalism with the sech(bt) form of the 
memory function, we have calculated the coefficients of the self-diffusion, shear viscosity 
and thermal conductivity. The results obtained have been compared with molecular 
dynamics (MD) data (Heyes 1983,1984) available up to 1984. 

In the present work, the validity of the SA and low-order decoupling approximation 
used in obtaining the numerical results of the frequency sum rules has been checked by 
performing some MD calculations and using already existing MD data (Lee and Chung 
1982, Toxvaerd 1984). The errors involved in numerical values of sum rules due to these 
approximations have been found to be not very significant. In this paper we have also 
studied the density and temperature dependences of the time evolution of the VAC, TSAC 
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and ECDAC functions. This was not done in our earlier work. The results for the time 
evolution of these autocorrelation functions are also compared with MD data wherever 
available. It is found that the effect of density dependence on the normalised VAC 
function is strong and it is moderate for the ECDAC function. It is found to be rather weak 
for the normalised TSAC function. On the other hand, for the temperature dependence 
it is found that its effect is strong for the VAC function, moderate for the TSAC function 
and rather small for the ECDAC function. These results are quite important and provide 
us with information about the importance of the correlated collisions and the attractive 
part of the potential in the theory of atomic transport in fluids. 

In order to see the quality of results over the entire fluid range, we have calculated the 
transport coefficients for several more densities and temperatures. These are compared 
with recent MD data (Heyes 1988). Generally, good agreement has been achieved. The 
present work provides a comprehensive picture for the time evolution of the time 
correlation functions and the transport coefficients for whole of the fluid range of LJ 
system. 

In section 2 we briefly present the theory and the model for the memory function. 
The calculations and results are given in section 3 .  In section 4 we present the conclusions. 

2. Theory 

2.1. Generalities 

The transport coefficients of mass (diffusion), momentum (viscosity) and energy (ther- 
mal conductivity) can be written as Green Kubo integrals (Boon and Yip 1980, Hansen 
and McDonald 1986) of an appropriate time correlation function. Explicitly these are 
given as 

,U = K Jux d t  C(t) (1) 

where p is a generalised transport coefficient and K is some thermodynamic constant. 
The autocorrelation function C(t) is defined as 

c(4 = (A(t)A(O)) (2) 
where A(t) is an appropriate dynamical variable. The angular brackets in equation 
(2) represent the thermodynamic average. If A(t) is the velocity of the particle, the 
corresponding transport coefficient is the self-diffusion coefficient given by 

where u l x  is the x component of the velocity of the particle labelled 1. The TSAC function 
is related to the shear viscosity defined as 

I "  
q = - i  VkBT 0 S( t )dt  s(4 = ( J x y  (4  Jxy(0)) (4) 

where 

In equation ( 5 ) ,  F,(t), u,,(t) and x i ( t )  are the x components of force on, velocity of and 
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position of the ith particle at time t .  Similarly the thermal conductivity coefficient A is 
related to the ECDAC given by 

a u, 
2m i # j  i+j  arij (7 )  

where the total interaction potential U(r )  = t U ,  = 1 X i z j  U(lri - rj I), r, = ri - rj 
and P, = rij/r,. In the above equations, n,  k g ,  m and V are the density, Boltzmann 
constant, temperature, atomic mass and volume of the system, respectively. The above 
expressions for the transport coefficients are quite general and valid for any density and 
temperature. 

The exact evaluation of the time correlation functions is not yet feasible except for 
very simple cases and for some models of fluids. However, at the molecular level the 
time evolution of the time correlation function can be obtained using the generalised 
Langevin equation 

a C(t> 
at 
- = - lo' M l ( t  - t )C(z)  d t  

where M,( t )  is the first-order memory function or relaxation kernel. In order to calculate 
the time correlation function from equation (8) the fundamental theoretical quantity to 
be calculated is the memory function Ml( t ) .  It follows from the technique used in deriving 
equation (8) that M ( t )  also satisfies an equation similar to equation (8). A generalisation 
of this leads to 

- a M ,  ( t )  = - lot M n + l ( t  - t ) M , ( z )  d z  n = 1 , 2 , 3 ,  . . .  
at (9) 

where M,(t)  is the nth-stage memory function. The Fourier Laplace transform of 
equation (8) coupled with equation (9) provide the continued-fraction representation, 
namely 

where 6, = M,(O) and these are called Mori coefficients. These are related to coefficients 
in the short-time expansion of the time correlation function given by 

where CO, -C2, C4 and -C6 are the frequency sum rules of the spectral function of the 
time correlation function. The sum rules are exactly expressible in terms of the static 
correlation functions and the interatomic potential. The expressions for a few of these 
coefficients for the VAC, TSAC and ECDAC functions have already been obtained by us 
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(Tankeshwar et a1 1987, 1988, 1989). The coefficients 6, and C2, are related. The first 
few 6, are given as 

81 = C2KO 8 2  = c4/c2 - c2/co 8 3  = (C,/C2 - c”. (12) 
The frequency spectrumf(w) of the time correlation function is defined as 

f(w) = 2C”(w) = 2 cos(wt) C(t) dt h 
where C”(w) is the imaginary part of C(w) .  C(t) can be obtained from 

cos(wt) f(w) dw. 

The generalised Green Kubo expression (1) can be written in terms of C(w)  as 

p = -iMC(O). (15) 

The problem of calculation of time correlation functions and hence transport coefficients 
now reduces to the calculation of the appropriate memory function. 

2.2. Model for the memory function 

In order to calculate C(w), it is necessary to truncate the hierarchy of equation (10) at 
some suitable stage. Higher-order a n ( w )  are more complicated objects mathematically 
owing to the restricted time evolution of fluctuating forces appearing in the expressions 
for Mn(w). Therefore, one normally restricts the discussion to a first- or second-stage 
memory function. Although we have a microscopic expression for the memory function, 
its calculation is not simple and amounts to a solution of a many-body problem (Boon 
and Yip 1980, Hansen and McDonald 1986). Therefore, several phenomenological 
forms of the memory function have been proposed in the literature (Martin and Yip 
1968) and an extensive review of these has been given by Boon and Yip (1980). In this 
work we use a phenomenological form (Tankeshwar et a1 1987,1988,1989) given by 

M I  (t) = a sech(bt). (16) 
This choice of the memory function enables us to incorporate its short-time behaviour 
exactly and its exponential behaviour for large times is also a desired feature (Levesque 
and Verlet 1970). The parameters a and b in equation (16) can be determined by 
requiring that the first two coefficients in the expansion of equation (16) and the actual 
memory function are the same. We obtain 

a = d l  b2 = ( s 2 .  (17) 

A?,(w) = &f;(o) + iA?;(w) = i 

Defining 

exp(iwt) M l ( t )  d t  (18) I 
we have 

A?;(@) = (na/2b) tanh(nw/2b) + i(a/2b){V[(b + io)/4b] - V [ ( b  - iw)/4b]} (19a) 

&f;(w) = (na/2b) sech(nw/2b) (19b) 
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where q ( x )  is the Euler psi function. The expression obtained for the frequency spectrum 
f( w )  is given by 

f ( w )  = 2S0n;l;,(w)/{[w + n;l;(w)J’ + [ n i ) ; ( 0 ) ] 2 } .  (20) 
The time correlation function C(t)  can be calculated using equations (20) and (14) and 
hence the expression for the transport coefficients is obtained to be 

Y = ( 2 / 4 ( 6 0 / 6 l ) a K .  (21) 

M2(t)  = S 2  sech(V‘&t). (22) 

f ( w )  = 2s0s,A;(w)/{[w2 - 61 + u M ; ( w ) ] *  + [wn;l;(u)]2} (23) 

On the other hand, if we truncate the hierarchy of equation (10) at the second stage and 
assume 

The expression obtained for f ( w )  is given by 

where f i ; ( w )  and &!(U) are the real and imaginary parts of f i z ( w ) .  The resulting 
expression for the generalised transport coefficient is obtained as 

We use equations (21) and/or (24) to calculate the transport coefficients and equations 
(14) and (20) or (23) to study the time evolution of the time correlation functions. 

3. Calculations and results 

We now present the numerical evaluation of the time evolution of the VAC, TSAC and 
ECDAC functions and use them to calculate the corresponding transport coefficients. 

3.1. Velocity autocorrelation function and diffusion coeficient 

The calculations of SI, S 2  and S3 appearing in the continued fraction for the Fourier 
Laplace transform of the VAC function require knowledge of the static correlation 
functions for two, three and four particles, respectively. The explicit expressions for a,, 
S2 and S3 are given in our earlier work (Tankeshwar et al 1987). There we used the 
SA and a low-order decoupling approximation for the static triplet and quadruplet 
correlation functions, respectively, to obtain the numerical values. In order to check the 
validity of the SA in estimating S 2 ,  now we have made MD simulation of the triplet 
contribution to the fourth-frequency sum rules of the VAC function. The expression 
which we have used to evaluate the triplet contribution is 

where N is the number of particles and 

U ,  = a2U(r i i ) / (a r ,  a r ig ) .  (26) 
The interaction potential U(r,) used in our calculations is the LJ potential with parameters 
&/kB = 201.9 K and 0 = 3.57 A-’. These parameters are representative of fluid krypton. 
We have simulated 108 particles of mass m = 139.44 X g (the mass of a Kr atom) 
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Table 1. Comparison of MD and SA results for V,, and S2, at T*  = 1.47. 

v,, (1052 s-2) S ( cm2 s-') 

n* MD SA MD SA 

0.482 0.0259 0.0256 0.038 0.044 
0.628 0.0568 0.0595 0.082 0.105 
0.844 0.22 0.24 0.32 0.44 

Table 2. Comparison of MD results (Lee and Chung 1982) and our results for the Mori 
coefficients 6, (measured in units of mu2/&) of the VAC function. The values in parentheses 
represent the MD values of Toxvaerd (1984). 

61 62 83 

It* T* MD Ours MD OUTS MD Ours 

0.85 
0.85 
0.85 
0.85 
0.75 
0.75 
0.75 

0.75 
0.65 
0.65 
0.65 
0.65 
0.30 

0.727 
0.778 
4.76 
4.66 
1.134 
1.104 
5.267 

5.122 
1.457 
1.430 
5.084 
5.026 
1.575 

273.8 
287.8 
793.1 
774.6 
252.4 
250.5 
644.5 

(640.4) 
621.5 
216.0 
217.7 
470.1 
465.2 

80.5 

272.1 
282.4 
798.6 
789.2 
255.2 
251.5 
645.6 

634.4 
218.9 
216.7 
476.4 
472.3 
81.1 

563.0 
606.0 

3204.0 
3151.0 
801.0 
796.0 

3442.0 
(3482.0) 
3316.0 
995.0 
968.0 

3241 .O 
3201 .O 
1066.@ 

588.74 
617.96 

3103.1 
3046.3 
794.6 
777.2 

3324.7 

3237.0 
950.3 
936.7 

3151.5 
3116.9 
1006.6 

1793.0 
2 045.0 

11 850.0 
11 670.0 
2 640.0 
2 596.0 

12 690.0 
(13 130.0) 
12 310.0 
3 303.0 
3 201.0 

11 730.0 
11 740.0 
3 501.0 

1440.7 
1594.4 

10 995.0 
10 757.0 
2 422.1 
2 358.3 

12 171.0 

11 814.0 
3 075.0 
3 022.5 

11 587.0 
11 444.3 
3 201.6 

to calculate equation (25). The details of MD calculations have been given by Pathak et 
a1 (1985). The results are shown in table 1 for three densities n* = n d  at T*(kBT/&) = 
1.47 along with the results obtained using the SA. From table 1 we find that the error 
involved in V by using SA is not significant. 

In order to see the effect of the SA and low-order decoupling approximation on the 
numerical values of d2 and d3, we compare our results in table 2 with already existing 
MD data of Lee and Chung (1982) and Toxvaerd (1984). We have used theoretically 
generated g ( r )  (Sung and Chandler 1974) for our calculations. From table 2, we have 
found that, for d2 which involves the triplet correlation function, the difference between 
our and the MD results is within the numerical error (5%). The error in estimating which 
involves up to a quadruplet correlation function is less than 10% except near the triple 
point where it is about 20%. Further, the percentage error in d2 and d3 decreases with 
decrease in density. Finally, we find that the use of the SA and a low-order decoupling 
approximation have an insignificant effect on the calculations of the total (including all 
the contributions) frequency sum rules. The resultsobtained for dl ,  d2 and d3 are plotted 
in figures l(a), l(b) and l(c), respectively. In figures l(b) and l(c) it is seen that d2 and 
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no 

Figure 1. The variation in the Mori coefficients (a )  S , ,  (b )  S 2  and (c) S 3  in units of mu2/& for 
the VAC function with density n* for the different temperatures indicated against each curve. 

6, are almost independent of density. d3 has been found to be linear in temperature 
(6, = C T * ) ,  whereas d2 deviates slightly from its linear behaviour. In contrast, d1 is 
strongly density and temperature dependent. From the behaviour of a,, a2 and d3 with 
density and temperature and equations (21) and (24) for the self-diffusion coefficient we 
expect that the density dependence of D is solely determined by d l .  

The time evolution of the VAC function V(t)  has been calculated using equations (14), 
(20) and (23). The results obtained from equations (14) and (20) are shown as broken 
curves, whereas V(t )  obtained using equations (14) and (23) are shown as full curves in 
figure 2 for six thermodynamic states. The MD results (Kushick and Berne 1973, Lee and 
Chung 1982) are represented as full circles. It can be seen from figure 2 that the results 
obtained using equation (20) (first stage of the continued fraction) for f(o) are in good 
agreement with MD data at low temperatures and high densities. On the other hand, the 
results obtained using equation (23) for f(o) (at the second stage of the continued 
fraction) are in good agreement for temperatures greater than the critical temperature. 
The results obtained for V(t)  using two different expressions (equations (20) and (23)) 
for f(o) suggests that it is not only the form of the memory function which matters in 
determining the time development of the correlation function but also the stage at which 
the continued fraction is truncated. This has also been noted before (Kahol et a1 1977) 
and needs further investigation. From our analysis of the time evolution of the VAC 
function, we have found that there is dramatic effect of density on the form of the VAC 
function. It exhibits a well known negative plateau (back-scattering) in the vicinity of 
the triple point. This result is incompatible with the Enskog hard-sphere theory in which 
the VAC function decays exponentially for all the densities and temperatures. 

The results for the diffusion coefficients D* = D(m/m)'/* are obtained from 
equation (24) and D*n* are plotted in figure 3 as a function of density for four isotherms. 
The MD results of Heyes (1983, 1988) are also shown there. For a dilute gas, D*n* is 
almost constant. With increasing density the particles will be arrested in their cages 
formed by neighbouring particles and this results in a decrease in D*n* with increasing 
density as can be seen from figure 3. The temperature dependence of the diffusion 
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Figure 2. Variation in the normalised VAC function V(t)  with time t" = t(E/ma2) obtained 
for six thermodynamic states: -, results obtained from equation (14) and (23); ---, 
results from equations (14) and (20); 0, MD results (Kushick and Berne 1973, Lee and Chung 
1982). 

constants are presented in figure 4 for five densities along with the corresponding 
computer simulation (Heyes 1983,1988) data. It can be seen from figures 3 and 4 that 
the agreement is satisfactory. The present work along with our earlier work predict the 
value of the self-diffusion coefficients over the entire fluid range except near the triple 
point, in agreement with MD results. Our theory also provides a good description of the 
density and the temperature dependences of the self-diffusion coefficient. 

3.2. Transverse stress autocorrelation function and shear viscosity 

The Mori coefficients a0, d1  and for the TSAC function have been calculated using a 
procedure similar to that used for the Mori coefficients of the VAC function. We have 
also calculated the triplet contribution to al ,  using the MD method from the expression 
given by 

The details of the MD calculation are the same as described in section 3.1. The MD results 
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0.2 - - 0.4 
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0 I I I 1 t 0 I I 1 

n* T *  

Figure 3. Variation in the diffusion coefficients 
with density at various temperatures: --, our 

Figure 4. Variation in diffusion coefficients with 
temperature: -, our results; 0, 0, X ,  ., 0 ,  

results; 0, ., 0 ,  A, MD results. MD results. 

are shown in table 1 along with the results obtained using the SA. From table 1, we have 
found that the ratio of (S2JSA and (S2JMD for n* = 0.482,0.628 and 0.844 are 1.16,1.28 
and 1.38, respectively. These indicate that the SA overestimates the triplet contribution 
but the error involved in estimating the total frequency sum rule is insignificant. 

In order to see the density and temperature dependences of Mori coefficients do, a1 
and S 2  for the TSAC function, we have plotted these in figures 5(a), 5(b) and 5(c), 
respectively. From figure 5(a) it can easily be seen that 6o depends strongly on density 
and temperature, whereas 61 is only weakly dependent on density but strongly depends 
on temperature. Specifically, for temperatures T* up to 4.5, initially d1 increases slightly 
with increasing density and then becomes almost constant and finally shows a small 
decrease. For higher temperatures it has been found that a1 increases with increase in 
density for all the densities investigated here. It can be seen from figure 5(c) that 6, 
increases with increase in density for all densities and is almost linear in temperature, 
i.e. a2 = BT*.  

The time evolution of the TSAC function is determined from equations (14) and (20) 
using the respective values of 6,. The time development of the normalised TSAC function 
is plotted in figure 6 as full curves for ten thermodynamic states. The results obtained 
are compared with the MD data of Heyes (1983) which are available only at the triple 
point. We have found that our theory provides reasonable agreement with the MD data. 
In figures 6(b) and 6(c) we have shown the temperature dependence of the decay of the 
TSAC function. The effect of temperature on the time dependence of the TSAC function 
was found to be quite significant. In figures 6(d) and 6(f) we have presented the results 
for the density dependence of S(t). It can be noted that the time evolution of S(t) is not 
affected by the change in density for times less than 0.04t* but, for times greater than 
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10 I I 
0.4 0.5 0.6 0.7 0.8 0.9 1.0 

n* 

01 10- 
0.3 0.L 0.5 0.6 0.7 0.8 0.9 0.3 0.L 0.5 0.6 0.7 0.0 0.9 

n" n" 

Figure 5. Variation in (a)  a0, ( b )  6,  and (c )  
density for the different temperatures indicated against each curve. 

in units of mu2/e for the TSAC function with 

0.04t*, the decay of S ( t )  is found to slow down with increase in the density. We have also 
found that the effect of temperature on the area under the normalised S ( t )  curve is 
greater than the effect of density. This implies that inclusion of correlated collisions is 
not as important as the modification of the hard-sphere diameter in hard-sphere theories. 
It is consistent with the use of the effective hard-sphere diameter in the Enskog theory 
used by Heyes (1988) who has obtained reasonable results for the shear viscosity. Our 
results show no negative region (back-scattering effect) in the time development of S(t)  
even at the triple point, in agreement with the MD data. 

The shear viscosity of the U fluids has been calculated using equation (21) with K = 
n/kBT. The results obtained for q* = qa2(me)-'i2 have already been plotted in our 
earlier work (Tankeshwar eta1 1988) for six isotherms. In order to see the quality of the 
results of our theory for the entire fluid range, the results obtained for a few more 
thermodynamic states are plotted in figure 7 .  In the present work we have also studied 
the temperature dependence of the shear viscosity. It is given in figure 8. From our 
earlier work as well as from the present paper we have found that the sech(bt) form 
of the memory function provides a good density dependence of the shear viscosity. 
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t *  

Figure 6.  Variation in the normalised TSAC function $0) with t* for different densities and 
temperatures: -, ---, our results; 0, MD results (Heyes 1983). 

However, for the temperature dependence of r ]  we have found that the results are in 
reasonable agreement for densities n* up to 0.7. The temperature dependence of r ]  is 
not well determined by our theory in the vicinity of the triple-point density. This result 
is consistent with our earlier conclusion that in the vicinity and at the triple point a 
Gaussian model for Ml(t)  provides better results than the results obtained using the 
sech(bt) form of the memory function. 

3.3. Energy current density autocorrelation function and thermal conductivity 

The Mori coefficients for the ECDAC function have been calculated for different densities 
and temperatures. So as a function of density is plotted in figure 9(a) for different values 
of T* . From the figure it can easily be seen that So shows strong dependences on density 
and temperature. From figures 9(b) and 9(c) it can be seen that S1 and S 2  are both 
increasing functions of density and temperature. S 2  is found to be almost linear in 
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4.0 

3.0 

2.0-  1.0 

0 

* * - l =  6 . 0  T =  10.0 

- 

- 1: 
1 I 1 

Figure 7. Variation in the shear viscosity q* and the thermal conductivity A* with 
density: -, our results; 0, MD results (Heyes 1988). 

0.5 0.5 - - 
-P 0 0  

01 I 1 I 1 1 I 

T* 
0 1.0 2.0 3.0 1.0 5.0 6.0 

Figure 8. Variation in q* with temperature for 
different densities indicated against each curve 
and set of symbols: -, our results; 0,  0, W, 0, 
MD data of Heyes (1983,1988). 

density. Further the enhancement of a1 with increase in density is found to be greater 
at high temperatures than at low temperatures. 

In order to study the temperature and density dependences of the time evolution of 
the ECDAC function, we plot the normalised E([)  in figure 10. In figures lO(a) and lO(c) 
we have shown the temperature dependence of E(t). It can be seen that the area under 
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Figure 9. Variation in (a )  a0, ( b )  6,, and ( c )  6, in units of ma2/& for the ECDAC function with 
density for the different temperatures indicated against each curve. 

0.0s 0.10 0.1s 

0 0.05 0.10 0.15 0.20 

''/\ '. , - - . _ _ _ L  

0.05 0.10 0.15 0.20 

?= 6.0 

- n*= 0.300 
---- "*. 0.500 

a05 0.10 0.1s 0.20 

t* 
Figure 10. Variationin the normalisedEcDaccorrelationfunction with t* for variousdensities 
and temperatures. 

the E(t)  curve for different temperatures at a given density is almost constant. From this 
we can say that the attractive part of the LJ potential does not play a significant role in 
determining the decay of E(t).  On the other hand, from figures 10(b) and 10(d), we find 
that the change in density affects the decay of E(t)  significantly. Further, the decay of 
E(t)  slows down with increase in density. This probably indicates that the inclusion of 
correlated collisions are important in the hard-sphere theories. 
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The predicted results for A *  = A ( m / ~ ) l / ~  ( d / k B )  are plotted in figure 7 for two 
isotherms. From earlier and present results we have found that our predictions for the 
thermal conductivity provide a reasonable density dependence over the entire fluid 
range. The temperature dependence of the thermal conductivity is shown in figure 11 
for four densities. The temperature dependence of A is found to be reasonable except in 
the vicinity of the triple-point density where agreement between the MD results and our 
results are not very satisfactory. 

4. Conclusions 

In this paper, we have presented a simple model for predicting the coefficients of the 
self-diffusion, shear viscosity and thermal conductivity of simple fluids. The theory is 
based on Mori’s continued-fraction representation of the time correlation function in 
terms of the memory function. For the memory function we have proposed a sech(6t) 
form, the parameters of which have been determined using the frequency sum rules. 
The validity of the SA and the low-order decoupling approximation used in obtaining 
the numerical results of the frequency sum rules have been checked by performing some 
MD calculations and comparing our results with already existing MD data (Lee and Chung 
1982, Toxvaerd 1984). The error involved owing to these approximations in the total 
frequency sum rules has been found to be insignificant. The numerical results presented 
in the present paper as well as in our earlier work (Tankeshwar et aZ1987,1988,1989) 
now provide results for the transport coefficients (i.e. D, q and A )  over essentially the 
whole of the fluid range. The results are compared with the available MD data and 
generally good agreement is achieved. It is found that the density dependence of the 
transport coefficients is well described in our theory. The temperature dependence of 
the self-diffusion coefficient is found to be quite satisfactory. However, only a limited 
success has been achieved for the temperature dependence of the shear viscosity and 
the thermal conductivity. 

We have also studied the effect of the density and temperature of the time correlation 
functions appearing in the Green Kubo formulae of the coefficients of self-diffusion, 
shear viscosity and thermal conductivity. It is found that the effect of the density 
dependence of the normalised VAC function is strong and it is less strong for the nor- 
malised ECDAC function. The density dependence of the normalised TSAC function is 
found to be rather weak. These results are important in the sense that these determine 
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the importance of the influence of the correlated collisions on transport properties. This 
implies that the influence of correlated collisions is a maximum for the self-diffusion 
coefficient, moderate for the thermal conductivity and small for the shear viscosity. This 
is in accordance with the predictions of the hard-sphere theory (Heyes 1988) which could 
not explain the self-diffusion coefficient and thermal conductivity of LJ fluids. We have 
also found that the effect of the temperature on the VAC function is strong. It is moderate 
for the TSAC function and small for the ECDAC correlation function. Since the repulsive 
part of the interaction potential becomes relatively more important at higher tempera- 
ture, we therefore conclude that the attractive part of potential is important in deter- 
mining the self-diffusion coefficient of LJ fluids. 

In conclusion, it is gratifying to see that a simple theory without any adjustable 
parameter has predicted the results for the transport coefficients which are in agreement 
with the MD data over a wide fluid range. The results are not very satisfactory near the 
triple point. The theory uses only an interatomic potential and a theoretically generated 
static pair correlation function as input. 

Acknowledgment 

One of us (KT) gratefully acknowledges the award of a senior research fellowship by 
the University Grants Commission, New Delhi. 

References 

Boon J P and Yip S 1980 Molecular Hydrodynamics (New York: hlcGraw-Hill) 
Hansen J P and McDonald I R 1986 Theory of Simple Liquids (New York: Academic) 
Heyes D M 1983 J .  Chem. Soc. Faraday lrans. I1 79 1741 
- 1984 J .  Chem. Soc. Faraday Trans. 80 1363 
- 1988 Phys. Rev. B 37 5677 
Kahol P K, Chaturvedi D K and Pathak K N 1977 Physica A 87 192 
Kushick J and Berne B J 1973 J .  Chem. Phys. 59 3732 
Lee L Land Chung Ting Horng 1982 J .  Chem. Phys. 77 4650 
Levesque D and Verlet L 1970 Phys. Rev. A 2 2514 
Martin P C and Yip S 1968 Phys. Rev. 170 151 
Pathak K N, Ranganathan S, Bansal R and Bruns W 1985 Phys. Rev. A 31 960 
Sung S and Chandler D 1974 Phys. Rev. A 9 1688 
Tankeshwar K, Pathak K N and Ranganathan S 1987 J .  Phys. C: Solid State Phys. 20 5749 
- 1988 J .  Phys. C: Solid State Phys. 21 3607 
- 1989 J .  Phys. Condens. Matter 1 6181,6193 
Toxvaerd S 1984 J .  Chem Phys. 81 5131 


